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ABSTRACT
In classical electrodynamics, by motion, it always means a rel-
ative movement of two observers in inertia reference frames, 
so that the covariance of the Maxwell’s equations is preserved 
respectively in two spaces under Lorentz transformation. The 
energy is thus conservative for the electromagnetic system. 
The theory for describing the electromagnetic behavior of the 
charged particles in vacuum space can be well described us-
ing the special relativity because of the invariance of the speed 
of light in vacuum. However, for engineering applications, the 
media have shapes and sizes and may move with acceleration, 
and a system may have multiple moving objects that may be 
correlated or independently under external mechanical trig-
gering. This paper presents the theory for describing the elec-
tromagnetic phenomena in this electro-magnetic-mechano 
system. We mainly introduce the Maxwell’s equations for a 
mechano-driven media system (MEs-f-MDMS) under low-speed 
approximation (v « c). We concluded that the MEs-f-MDMS 
are required for describing the electrodynamics inside a mov-
ing object that moves not only with accelerated translation 
motion but also has rotation motion. The classical Maxwell’s 
equations are to describe the electrodynamics in the region 
where there is no local medium movement. The full solutions 
of the two regions satisfy the boundary conditions, so that the 
rotation of the object affects the electromagnetic field at vicin-
ity. The theoretical approaches for solving the MEs-f-MDMS are 
also presented.
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1. Introduction

Studying the electrodynamics of a moving medium has a long-lasting in-
terest and importance. For a general medium that moves with a uniform 
speed along a straight line, it is sufficient to use the standard differential-
form Maxwell′s equations (MEs) and the approximate Minkowski constitu-
tive equations for describing its electromagnetic behavior [1–3]. Using the 
Lorentz transformation, the electromagnetic fields observed in a moving 
frame (S′) can be derived from a non-moving observer′s reference frame 
(S) by preserving the covariance of the MEs with the use of Lorentz trans-
formation [3,4]. This is the standard and well-received special relativity in 
classical electrodynamics. Since an important parameter in the Lorentz trans-
formation is the speed of light, which usually means the speed of light in 
vacuum, therefore, the special relativity is about the same electromagnetic 
phenomenon observed by two independent observers located in two iner-
tial reference frames that have a relative movement at a constant speed, and 
the entire space is either vacuum or filled with one type of isotropic medium 
without boundary. An observer named Alice is in a moving inertial frame S′

that moves at a velocity v0 relative to the non-moving frame S (Lab frame). If 
there is a point charge +q that is at rest in the S frame, what Bob in the rest 
inertial frame S observes is only a Coulomb field. While for Alice, the point 
charge is moving at a relative velocity of –v0, so that she will detect not only an 
electric field but also a magnetic field as caused by the moving charge +q. The 
magnetic field and electric field observed by Alice (B′, E′), and that by Bob 
(B, E) are correlated by the Lorentz transformation under the assumption of 
the covariance of the Maxwell’s equations.

To calculate the electromagnetic fields of a moving medium, one must 
have the constitutive relations of materials that are treated as supplemen-
tal conditions to solve the MEs in matter. Minkowski’s views are grounded 
on an assumption that the properties of the medium and the correspond-
ing constitution equations in the rest inertial frame remain the same. There 
are two requirements: moving with uniform speed along a straight line or 
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Figure 1. Two approaches for dealing with the electrodynamics of moving medium. (a) Special 
relativity theory is about the experience of two independent observers, Bob and Alice, who are 
located in different reference frames (Lab frame S, Moving frame S’) that are relatively moving at a 
constant velocity and along a straight line. Bob and Alice observe the same electromagnetic phe-
nomenon occurring in vacuum space, but with different measurement results. Such an approach 
is most effective for describing the electrodynamics in the universe. (b) Maxwell’s equations for a 
mechano-driven media system (MEs-f-MDMS) is about one observer who is observing two elec-
tromagnetic phenomena, which are associated with two moving objects/media located in the 
two reference frames that may relatively move at v « c. In general, the media/objects have sizes 
and boundaries, and they may move with acceleration along complex trajectories as driven by an 
external force. Such theory is most effective for engineering applications, but it can go beyond. We 
need to point out that special relativity may not be easily adopted for describing the case shown 
in (b) due to the change in speed of light across medium boundary.

movement occurring in inertial reference frame, and the corresponding con-
stitution equations being pre-determined in advance [3]. However, if the 
medium moves along a complex trajectory with acceleration (Figure 1b), and 
the velocity could be a function of time and position for shape-deformable 
materials or liquid, it would be mathematically impossible to describe the 
electromagnetic fields of the moving medium in this case. More impor-
tantly, practical media/materials could be anisotropic with their permittiv-
ity strongly depends on frequency and even crystal orientations, thus, the 
medium dispersion relationship should be considered [5]. Such cases occur a 
lot in engineering applications for practical materials.

2. Galilean space and time

In general, there are two fundamental approaches for developing the elec-
trodynamics of a moving medium (Figure 1). The first method is through 
Einstein’s relativity and Minkowski constitutive equations, forming the ba-
sis of field theory [3,6]. The relativity approach works extremely well for 
describing the electromagnetic behavior in vacuum, especially for universe, 
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Figure 2. (a) Case for special relativity: Schematic diagram representing the general approach in 
special relativity, in which the fields observed by an observer who is moving at a constant velocity 
v about the fields (E′, B′) that was first generated in the Lab frame (E, B). The Lorentz transformed 
relationships between the fields in the two reference frame in parallel to v and perpendicular to v 
are inset. (b) Mechano-driven moving media system in non-inertia frame: A general case in which 
the observer is on the ground frame (called Lab frame), with several media moving at complex 
velocities along various trajectories as represented by the dashed lines. The medium can translate, 
rotate, expand and even split. The co-moving frames for the media are: (x1, y1, z1), (x2, y2, z2). in 
such a case, the Lorentz transformation for special relativity cannot be easily applied, and the only 
realistic approach is to express all of the fields in the frame where the observation is done (Lab frame) 
and all of the fields are expressed in the variables in the Lab frame.

in which all of the stars are treated as ‘points’ without boundaries and vol-
umes. The second approach is based on Galilean transformation, in which 
the space and time are independent [7,8]. So, there exists an absolute space 
and all inertial frames share a universal time, which are essentially different 
from special relativity, but it works well for engineering applications. Here, 
we explore the conditions under which the two approaches give the same
results.

Special relativity is most powerful for treating the electromagnetic behav-
ior observed in the Lab frame (at rest) (r, t) (E, B, D, H) and the moving frame 
affixed to the medium (r′, t′) (E′, B′, D′, H′) that is moving at a constant ve-
locity v0 along the x-axis, which are correlated by the Lorentz transformation 
(Figure 2a).

x′ = 𝛾 (x – v0t) (1a)
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y′ = y (1b)

 
z′ = z (1c)

 
t′ = 𝛾(t – x𝜈0/c2) (1d)

Or equivalently: 

𝜕
𝜕t′ = 𝛾( 𝜕

𝜕t + v0
𝜕
𝜕x ) (1e)

 
𝜕

𝜕x′ = 𝛾( 𝜕
𝜕x + v0/c2 𝜕

𝜕t ) (1f)

 

𝜕
𝜕y′ = 𝜕

𝜕y (1g)

 

𝜕
𝜕z′ = 𝜕

𝜕z (1h)

where 𝛾 = 1/ (1 – v2
0/c2)1/2, and c is the speed of light in vacuum. In the 

relativistic theory, space and time are unified and correlated. By assuming 
the covariance of the MEs and use the Lorentz transformation as stated in 
Equation (1a–1h), the relationship between the fields observed in a moving 
frame in the term of those in the Lab frame can be correlated by following 
relationship for the fields in 

E′
// = E//, B′

// = B//, D′
// = D//, H′

// = H//, (2a)

E′
⟂ = 𝛾(E + v0 × B)⟂ (2b)

 

B′
⟂ = 𝛾(B – v0 × E/c2)⟂ (2c)
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D′
⟂ = 𝛾(D + v0 × H/c2)⟂ (2d)

 

H′
⟂ = 𝛾(H – v0 × D)⟂ (2e)

For the purpose of our discussion, we now consider the results for low mov-
ing speed case, v0 ≪ c, the fields in the two reference frames are related 
approximately by [9]: 

E′ ≈ E + v0 × B (3a)

 

B′ ≈ B – v0 × E/c2 (3b)

 

D′ ≈ D + v0 × H/c2 (3c)

 
H′ ≈ H – v0 × D (3d)

 
J f ′ ≈ J – 𝜌v0 (3e)

 
𝜌′ ≈ 𝜌 – v0 ⋅ J/c2 (3f)

In the Galilean transformation: 

x′ = x – v0t (4a)

 
y′ = y (4b)

 
z′ = z (4c)

 
t′ = t (4d)

where the space and time are absolutely independent. Galilean space and time 
are most frequently used in classical physics and engineering applications. 
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The fields in the two reference frames are related by: 

E′ = E + v0 × B (5a)

 
B′ = B (5b)

 
D′ = D (5c)

 

H′ = H – v0 × D (5d)

 

J′ = J – 𝜌v0 (5e)

 
𝜌′ = 𝜌 (5f)

The results for Galilean transformation (Equation (5a–5e) are the same as 
that from Lorentz transformation (Equations (3a–3d)) if v0 ≪ c. This means 
that the electromagnetic behavior of slow-moving objects can be effectively 
described in the Galilean transformation. This is the case that we care about 
for engineering applications, as shown in Figure 2b.

The conditions under which the results from the Lorentz transformation is 
equivalent to that of the Galilean transformation are as following [10]:

1. The relative speed between two inertial frames of reference is much 
smaller than the speed of light in vacuum: v0 ≪ c, so 𝛾 ≈ 1; and

2. Galilean phenomenon takes place in an arena, the spatial extension of 
which is much smaller than the distance traveled by light during the dura-
tion of the phenomenon: x ≪ ct. This condition can be understood based 
on following discussion. From Equation (1), under the approximation of 
v0 ≪ c, the Lorentz transformation for time becomes t′ ≈ (t – xv0

c2
) =

1

c
(ct – x v0

c
). If x ≪ ct, the space caused correction to time is so small and 

it can completely ignored, resulting t′ ≈ t, which is the result of Galilean 
transformation.

These two conditions warrant the applications of treating electromag-
netic phenomena in practical engineering using Galilean transformation, 
so that the complication introduced by Lorentz transformation can be
avoided.
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3. Galilean electromagnetism

The classical MEs satisfy the covariance under Lorentz transformation, which 
is the foundation for correlating the electromagnetic fields observed in a mov-
ing frame S′ with that observed in the Lab frame for motions without accel-
eration. In the inertia reference frame, there is no external input force, so that 
the total electromagnetic energy is conserved. For engineering applications, 
approximated methods are always effective for treating practical electromag-
netism in the most feasible approach. As a result, Galilean electromagnetism 
has been developed based on the work by Le Belllac and Levy-Léblond in 
1975 [7] for describing the electromagnetic phenomenon of charged medium 
moving at nonrelativistic speeds. According to Rousseaux: Galilean elec-
tromagnetism is not an alternative to special relativity but is precisely its 
low-velocity limit in classical electromagnetism [8]. Galilean electromagnet-
ics mainly includes two quasi-static limits of MEs: the magneto-quasi-static 
(MQS) limit which neglects the displacement current, and the electro-quasi-
static (EQS) limit which ignores the magnetic induction. The former is a 
space-like limit with E ≪ cB, while the latter is a time-like limit with E ≫ cB. 
We now present the theoretical schemes of the two limit cases.

3.2.1. Electric limit

In the first case, if E ≫ cB, one can ignore the 𝜕
𝜕t

B term in Faraday’s law in 
MEs, because the time variation of the small magnetic field does not produce 
much electric field. Using the subscript ‘e’ to represent this case, the MEs are 
approximated as: 

∇ ⋅ De = 𝜌 (6a)

 
∇ ⋅ Be = 0 (6b)

 
∇ × Ee ≈ 0 (6c)

 
∇ × He = J + 𝜕

𝜕t De (6d)

The law of conservation of charges becomes: 

∇ ⋅ J + 𝜕
𝜕t 𝜌 = 0 (6e)
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In Galilean transformation, we have the following operations: 

𝜕
𝜕t′ = 𝜕

𝜕t + v0 ⋅ ∇ (7a)

 

∇′ = ∇ (7b)

 Using which, we can prove that Equations (6a–6d) are covariant under the 
Galilean transformation, and the corresponding fields in the two reference 
frames are correlated by: 

E′
e ≈ Ee (8a)

 

B′
e ≈ Be – v0 × Ee/c2 (8b)

 

D′
e ≈ De (8c)

 

H′
e ≈ He – v0 × De (8d)

 

J′ ≈ J – 𝜌v0 (8e)

 

𝜌′ ≈ 𝜌 (8f)

which are just the result from the Lorentz transformation under the 
approximations of E ≫ cB and v0 ≪ c.

3.2.2. Magnetic limit

In the first case, if E ≪ cB, one can ignore the 𝜕
𝜕t D′ term in Ampere’s law in 

MEs, because the small displacement current does not produce a significant 
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magnetic field. Using the subscript m to represent this case, we have: 

∇ ⋅ Dm = 𝜌 (9a)

 

∇ ⋅ Bm = 0 (9b)

 

∇ × Em = – 𝜕
𝜕t Bm (9c)

 

∇ × Hm ≈ J (9d)

The law of the conservation of charges becomes: 

∇ ⋅ J = 0 (9e)

Physically, the theory based on these equations will describe situations 
where the electric current is the dominant source of electromagnetic behav-
ior. Accordingly, from Equations (3a–3f), the fields in the moving frame S′

and that in Lab frame S are correlated by: 

E′
m ≈ Em + v0 × Bm (10a)

 

B′
m ≈ Bm (10b)

 

D′
m ≈ Dm + v0 × H/c2 (10c)

 

H′
m ≈ Hm (10d)

 

J′ ≈ J (10e)
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𝜌′ ≈ 𝜌 – v0 ⋅ J /c2 (10f)

One can prove that Equations (8a–8d) and (10a–10c) satisfy the Galilean 
covariance.

The two limiting cases shown in this section satisfy the Galilean covari-
ance, and the results are very useful for dealing with many electromagnetic 
phenomena in engineering, and they have been very useful for many cases. 
For a general case in which the approximations we made above may not be 
valid if one considers the relative strengths of the fields, a more general theory 
is thus required.

4. Faraday’s law for a moving object

The general equation for the Faraday’s law is for stationary medium with 
only considering the time-dependent behavior of the electromagnetic field. 
We now start from the physics principle to derive the equation for a moving 
medium/object, instead of from equations to equations. The mathematical 
expression of the Faraday’s law of electromagnetic induction is the Lentz’s 
flux-rule: the reducing rate of the magnetic flux is the electromotive force 
(EMF): 

𝜉EMF = –
dΦB
dt = – d

dt ∬
s(t)

B ⋅ ds (11)

where the integral is over an open surface s(t) whose shape and open edge 
could be time-dependent, which represents a moving object with deformable 
shape. Equation (11) is the flux – rule and it can be used to describe most of 
the electromagnetic phenomena, especially for power generation and electric 
motor. Figure 3a represents a general case that can be well described using 
the flux-rule, in which a thin-wire circuit has a fixed shape but may move as 
a solid translation.

However, there are a few cases that appear to be ‘anti-flux-rule’, as presented 
by Feynman [11]. The anti-flux rule examples occur in cases that there are a 
large conductive piece appearing in the electric circuit that rotates around an 
axis, such as the two cases shown in Figures 3b,c, which has been referred as 
one-piece Faraday generator [12,13]. A common characteristic of the ‘anti-
flux’ examples is that the circuit contains a large-size metal piece, in which 
the moving trajectory of a point charge depends on the force acting on it be-
sides the geometrical ‘confining effect’ of the transport circuit. Take the case 
in Figure 3c as an example, in which a rotating metal disc is present in a mag-
netic field, and part of the circuit is a sliding needle at its edge. Once the disc 
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Figure 3. Several cases regarding to the flux rule for electromagnetic induction. (a): A typical ex-
ample of thin wire circuit that is moving with acceleration with respect to the Lab frame in a time- 
and space- dependent magnetic field. (b): A conductive fan that is rotating inside a uniform mag-
netic field. (c) A rectangular thin wire circuit that is at stationary in a uniform magnetic field, but 
with one end sliding on the edge of a rotating conductive disc at t = 0 and t = t, and the other end 
is connected to the axis of the disc. The unit charge within the macroscopic size object can move, 
which leads to an additional term in the Faraday’s law for electromagnetic induction.

rotates, the total magnetic flux goes through the circuit may not change, so 
that there would be no EMF according to Equation (11), but the EMF does 
exist experimentally! This paradox was not clearly explained by Feynman. In 
his text book, he said ‘It must be applied to circuits in which the material of 
the circuit remains the same. When the material of the circuit is changing, we 
must return to the basic laws. The correct physics is always given by the two 
basic laws ∇ × E = – 𝜕

𝜕t
B, F = q(E + v×B).’ [11]. It appears that such examples 

were not clearly explained by Feynman. Here the addition of Lorentz force is 
to make up the shortcoming of the MEs in treating the electromagnetic be-
havior of moving object. Therefore, we now present more detailed discussions 
about this case.

The ‘anti-flux-rule’ case is likely due to that the path of a unit charge mov-
ing in the disc (as indicated by a blue dashed line) deviates from the original 
rectangular ‘circuit’ (as indicated by black dashed line in Figure 3c,l), along 
which the integral for calculating the magnetic flux is done [14]. As the charge 
enters the disc at point P1 at its edge at t = 0, it moves along the radial direc-
tion to point P2 as the disc rotates to t = t; its moving path is indicated by 
a blue dashed line. Therefore, the area as defined by the two dashed lines in 
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Figure 6cIIb is the effective area of change of magnetic flux. This change in flux 
is due to the deviation of the unit charge transport path from that of the ge-
ometrical path as the disc rotates. This is caused by the existence of the large 
metal disc in the circuit, and the rotation of which produces the observed 
EMF. To include this argument officially in the equation, we firstly focus on 
the expansion of the Faraday’s law.

To carry on the mathematical calculation in Equation (11), we use a flux 
theorem (see [15]): for a general functions G(r,t), the boundary surface of 
which moves at a velocity field v(r, t) [16], we have 

d
dt ∬

C
G ⋅ds = ∬

C
[ 𝜕
𝜕t G+(G ⋅∇)v +(∇ ⋅ G) v –(∇ ⋅ v)G] ⋅ds–∮

C

(v × G) dL

(12)
Using this mathematical identity, Equation (11) becomes [17]: 

𝜉EMF = – d
dt ∬

s(t)
B ⋅ ds = – ∬

s(t)
{ 𝜕

𝜕t B – ∇ × [v × B]} ⋅ ds (13)

where v is the velocity at which the boundary surface moves. More general 
discussion has been given by Scanlon et al. [18]. Equation (11) and Equation 
(11) applies to the case that there is no change of the closed circuit, for in-
stance, there is no relative sliding between the wire and the disc, such as in 
Figure 3a. While in Equation (13), v means the moving velocity of the circuit, 
and it allows a flexible or changeable contact between the wire and the disc. 
Most importantly, if the circuit is not a closed loop as in Figure 3b, Equation 
(13) should be used [19].

For the cases shown in Figures 3b,c, where the total flux does not change 
as the fan is rotating in a uniform magnetic field just based on the size of 
the geometrical area, but there is a potential drop generated along the fan 
blade due to the Lorentz force (e.g. motion generated potential) [20]. This is 
because the effective area swiped across by the fan blade as the unit charge 
travels along the fan blade, which causes a change in magnetic flux. As the 
fan rotates, the work done by the Lorentz force on the unit charge according 
to Equation (13) is: 𝜉EMF = ∫a

0
r𝜔B0dr = 1

2
𝜔a2B0.

For the case shown in Figure 3cII, the charge can move inside the conduc-
tive disc at a velocity of vr = r𝜔 perpendicular to the radial direction, where 
𝜔 is the angular velocity, thus the total electromotive force is along the entire 
radius a from P1 to O, with a potential drop calculated using Lorentz force: 

𝜉EMF =
0

∫
a

[vr × B] ⋅ dr=
a

∫
0

r𝜔 B0dr = 1

2
𝜔 a2 B0 , and the current flowing in the 

circuit is 1

2R
𝜔 a2 B0.
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Alternatively, using the flux rule (Equation 10), the area of the disc segment 
between the two dashed lines is: A = 1

2
𝜔t a2, so 𝜉EMF = AB0/t = 1

2
𝜔a2 B0. The 

results are equivalent to that received using Lorentz force [14].
Therefore, the examples of the ‘anti-flux’ are likely due to that the path of the 

unit charge moving in the disc (blue dashed line) deviates from the original 
rectangular ‘circuit’ (as indicated by black dashed line in Figure 3c), along 
which the integral for calculating the magnetic flux is done. As the charge 
enters the disc at point P1 at its edge at t = 0, it moves along the radial to point 
P2 as the disc rotates at t = t (Figure 3c); its moving path is indicated by a blue 
dashed line. Therefore, the area as defined by the two dashed lines in Figure 3c 
is the effective area of change of magnetic flux. This change in flux is due to 
the deviation of the unit charge transport path from that of the geometrical path 
as the disc rotates. Therefore, the understanding of flux rule needs to consider 
the charge transport process if there is a relative movement in the conductive 
medium and a change in circuit structure, such as sliding.

The example illustrated in Figure 3c is a great example regarding to elec-
trodynamics of a moving media system. The thin wire section is at stationary, 
but the metal disc is rotating, with a needle sliding on it edge. The moving ve-
locities of the space points inside the disc are space (r)- and time-dependent, 
and there is acceleration during disc rotation. This is a good example of why 
we have to expand the Maxwell’s equations for a moving media system.

Now we derive the Faraday’s law in differential form starting from its 
integral form with considering the movement of object/medium [21]: 

∮
C

E′ ⋅ dL = – d
dt ∬

s(t)
B ⋅ ds (14)

where E′ represents the electric field in the rest frame of each segment dL of 
the path of integration. The Faraday’s law means that the reducing rate of the 
magnetic flux through an open surface is the circulation of the electric field 
around its looped edge. We now need to express E

′
in the terms of the field E

and B in Lab frame. Using Equation (12), Equation (14) becomes: 

∮
C

(E′ – v × B) ⋅ dL = – ∬
s(t)

𝜕
𝜕t B ⋅ ds (15)

The Lorentz force acting on a point charge q in the observer Bob’s frame is 
F = q (E +vt ×B), where vt is the total moving velocity of the point charge that 
may be different from the moving velocity v of the circuit. Alternatively, the 
force acting on the same charge in its rest frame is F

′
= qE

′
. In general, F ≠ F

′

because of the accelerated movement of the circuitry surface boundary, unless 
the moving frame is an inertia frame [22], which means that we must have 
v = v0. Therefore, only when the medium movement is at a constant speed 
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along a straight line, v = v0, we can have F
′

= qE
′
 for both inertia reference 

frames, which gives E
′

= E + vt × B.
When the medium moves with an acceleration, the electromagnetic behav-

ior of the moving medium becomes complex. We take a unit charge q as an 
example. If the medium that carriers the unit charge experiences an acceler-
ation motion, the force acting on the unit charge should include the inertia 
force 𝜕

𝜕t
(mv) besides the electromagnetic force, where m is the mass of the 

point charge. In this case, we have: 

qE
′

– 𝜕
𝜕t

(mv) = qE + qvt × B (16)

where vt  is the total moving velocity of the unit charge in the S frame. vt  can be 
split into two components for a general case: moving velocity v of the origin of 
the reference frame S′, which is only time-dependent so that it can be viewed 
as a ‘rigid translation’, and vr  is the relative moving velocity of the point charge 
with respect to the reference frame S′, which is space- and time-dependent 

vt = v (t) + vr (r, t) (17)

The space dependence of vr  represents the shape deformation and/or rota-
tion of the medium, and time dependence represents the local acceleration. 
Substituting Equations (16) and (17) into Equation (15), we have 

∮
C

[E + vr × B + 1
q

𝜕
𝜕t

(mv)] ⋅ dL = – ∬
s

𝜕
𝜕t B ⋅ ds (18)

We now consider two cases [5,14]:
1). If the medium is a circuit that is a thin wire loop, so that the moving 

velocity vr of a point charge inside the wire is parallel to the wire, e.g. vr  is 
parallel to the integral path dL, the term [vr × B ] ⋅ dL vanishes automatically 
[20]. In addition the motion of the reference is a solid translation so that v(t)
is only time-dependent, the third term in Equation (18) vanishes as well, re-
sulting in the standard Maxwell’s equation. ∇ × E = – 𝜕

𝜕t
B. This means that 

the standard form of the Faraday’s law in differential form is valid for all thin-
wire circuit case. This is the case presented in all of the text books, but it has a 
condition of thin wire approximation, which needs to be elaborated here. The 
thin wire circuit is an imaginary circuit whose shape is arbitrary. According 
to the flux rule, thin wire circuit means that the moving trajectory of the unit 
charge is exactly the integral path for calculating the magnetic flux, and the 
circuit is taken as an imaginary circuit when we convert the integral equation 
into differential form. If the imaginary circuit can be expanded to any space, 
the thin circuit assumption holds exactly if the circuit does not intercept with 
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Figure 4. Schematic diagram showing an accelerated moving circuit that is made of thin wires (a), 
and the case if there is a large bulk piece of medium incepting the circuit (b), with the presence of 
magnetic field.

any conductive medium boundary, so that it is only exact for vacuum space 
case, but may not be applicable to the case if there is a moving macroscopic 
medium.

Therefore, in practice, if there are only rotating thin wires in the circuit 
without the presence of bulk medium on the path of electron flow, such as 
the case shown in Figure 4a, the MEs remain the same although the thin-wire 
circuit may rotate, move with acceleration, and/or have a varying shape. In 
this case, since the wire is so thin that there is no need to consider it as a sep-
arate medium in the calculation of electrodynamics. 2). The medium is large 
so that the relative velocity of the unit charge has a component perpendicular 
to the integral path in the segment where the integral loop intercepts with a 
conduction medium, such as the case shown in Figure 3c, such cases occur 
in engineering due to the size, shape and volume of the media, which cannot 
be ignored or taken as a point due to the space in which the electromagnetic 
behavior is considered.

The example in Figure 3c can be extrapolated to a general case in which 
∮
C

[vr × B] ⋅ dL ≠ 0 for the space inside the medium, because the charge mov-

ing trajectory does not coincidence with that of the integral path, so that 
the Lorentz force can acts on it locally although there is no change in total 
magnetic flux from geometrical point of view. This example also gives us an 
understanding about the meaning of the relative movement velocity vr . Using 
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the Stokes theorem, Equation (18) becomes 

∇ × [E + vr × B + 1
q

𝜕
𝜕t

(mv)] = – 𝜕
𝜕t B (19)

Since the movement of the origin of the reference frame S′ that is affixed to 
the moving medium can be treated as a rigid translation so that it is only time-
dependent, v(t), which means ∇ × ( 𝜕

𝜕t
(mv(t))) = 𝜕

𝜕t
[m∇ × v(t)] = 0, so 

that the inertia force term drops out naturally in the differential equation, we 
have [14]: 

∇ × (E + vr × B) = – 𝜕
𝜕t B (20)

 This case is rarely discussed in classical text books. Equation (20) can be ap-
plied to cases that have a fan-blade shape rotating media and a rotation metal 
disc in a magnetic field as illustrated in Figures 3b,c. The finite size of the 
medium/circuit allows the charge to ‘wonder’ inside the conductive compo-
nent, so that it is not easy to define where is the integral path of the circuit 
across the media.

In Equation (18), when the integral path C is intercepted by a bulk size 
medium, inside which the practical moving velocity of the point charge may 
not be parallel to the integral path within the conductive medium, the term of 
vr×B appears in the equation. It should be noticed that the relative velocity vr
of the charge inside a medium may not be small in comparison to its moving 
velocity v(t) of the reference frame. This the case shown in Figure 4b.

Now let’s look at the case presented in Figure 3c. If the magnetic field is 
time-independent, 𝜕

𝜕t
B = 0, from Equation (20), we have ∇ × E = –∇ ×

(vr × B), which means that the movement of a medium in a magnetic field 
would generate an electric field, resulting in an electromotive force, which 
agrees with experimental observations. However, the situation is different if 
one use the classical MEs, one would have ∇ × E = 0, which means E = 0, 
and there should be no electromotive force. This apparently disagrees with 
experimental observations. Such discrepancy is due to the fact that medium 
motion was not considered in classical MEs!

5. Ampere–Maxwell’s law for a moving object

5.2.1. Mathematical derivation

We now consider the Ampere–Macium case: 

∮
C

H′ ⋅ dL = ∬
s

Jds + d
dt ∬

s
D ⋅ ds (21)
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where the H′ is the magnetic field on the moving medium in the frame where 
dL is at rest. The Ampere–Maxwell’s law means that the total current through 
an open surface plus the increasing rate of the electric flux through an open 
surface is the circulation of the magnetic field around its looped edge. Using 
the flux theorem Equation (12), we have 

∮
C

H′ ⋅ dL = ∬
s
(J + 𝜌v)⋅ds + ∬

s

𝜕
𝜕t D ⋅ ds – ∮

C
(v × D)dL (22)

Using the Stokes theorem on the left-hand side of Equation (22), we have 

∇ × (H′ + v × D)= J + 𝜌v + 𝜕
𝜕t D (23)

Under low speed limit, from Equation (5d), the local magnetic field in the 
moving frame is

H′ ≈ H – vt × D, (23)

we have 

∇ × (H – vr × D)≈ J + 𝜌v + 𝜕
𝜕t D (24)

The terms vr × D is the electric field induced magnetization due to media 
movement. Accordingly, it is possible to produce the same magnetic field either 
by a conduction current, or by the motion of a charged body, or by ther motion 
of a polarized body.

5.2.2. Explanations of the Röntgen and Eichenwald experiments

We now consider a simple case in which the electric field is a constant, 
𝜕
𝜕t

D = 0, and there are no external current or charges, Equation (24) gives, 
∇ × H ≈ ∇ × (vr × D) . This means that a magnetic field H ≈ vr × D would 
be generated if a medium is rotating inside an electric field. This is the results 
of the Röntgen and Eichenwald experiments, as shown in Figure 5 [23]. Such 
experiments are usually listed in the description of special relativity. In our 
opinion, they have no relationship with special relavitity since the moving 
velocity is extremely low, instead they are the result of the electromagnetism 
of moving objects/medium described by Equation (24).

A circular hard rubber disc of thickness d is mounted on bearings so as to 
be free to rotate about a vertical axis, as shown in Figure 5a. Attached rigidly 
to it above and below are metal rings of radial width b. Each metal ring has 
been cut right through at one place by a narrow radial slit. The two metal rings 
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Figure 5. (a) Set up of the Röntgen and Eichenwald experiments. (b) Measurement of the con-
vention current (𝜌v) that produces the same magnetic field as in (a). (c) Method of measuring 
the magnetic field produced by a polarization current represented by [∇ × (vr × D)+ 𝜕

𝜕t
D]. 

Reproduced with permission from Dover Publications [23]. 

are connected to the terminals of a voltage source and thus become charged 
to a potential difference V. The apparatus including the rubber disc and the 
metal rings may now be set in rotation motion as a single solid piece (the 
Rowland experiment), In any case, we have the following charges with which 
to reckon: true surface charges on the metal plates: 𝜎1 = εV/d; surface charges 
on the hard rubber disc: 𝜎2 = – (ε –1)V/d. If both disc and rings be placed in 
rotation, the upper metal ring carries a convection current vb𝜎1 along the 
ring, where v is the linear rotation speed of the ring, and the adjacent surface 
of the hard rubber carries the current vb𝜎2. In all, then, we have a convection 
current of vb (𝜎1 +𝜎2) = vbV/d. This current is represented by the second term 
at the right-hand side of Equation (24).

Alternatively, if the metal rings as shown in Figure 5a are unattached to the 
rubber disc, and the rotation is applied only to the rubber disc and the metal 
rings are at rest (the Röntgen experiment), and the connection of circuit is 
shown in Figure 5b. In this case, the convection current is only generated by 
the motion of the charges on the rubber disc surface, which is -vb(ε –1)V/d.

Furthermore, the correction to the local magnetic field arising from the 
motion of polarized medium is represented by the second term –∇× ( vr ×D)
in Equation (24). In the apparatus shown in Figure 5c, there is a rotating hard-
rubber disc. It moves between two stationary and unattached metal rings, 
the upper of which is made up of two semicircular halves. The low ring is 
grounded while the two upper halves are connected to equal but opposite 
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sources of an electric potential, +V, and –V. A dedicated pivoted magnetized 
needle free to rotate about the vertical axis is located above the disc in the 
neighborhood of the rotation axis for measuring the local magnetic field. The 
convention currents in the two semi-rings flow in opposite directions. Since 
the polarizations in the space below the two semi-rings are opposite, thus, a 
polarization current represented by the term [∇ × ( vr × D) + 𝜕

𝜕t
D] is along 

a direction parallel to the axis of rotation, e.g. flowing from a to b (or from b
to a’ on return) as marked in Figure 5c, which is needed to make the con-
tinuation of the convention current according to conservation of charges. 
Alternatively, the point a’ can be seen as a charge sink, the point a can be 
considered as a charge source, the conservation of charges is possible due to 
the presence of the displacement current. Here, the polarization current be-
longs to the displacement current, and the convention current belongs to the 
conduction current.

6. The Maxwell’s equations for a mechano-driven system

We now put all of the derivations in Sections 4 and 5 together, the elec-
trodynamic behavior inside a moving medium can be described by [5,14]: 

∇ ⋅ D = 𝜌f (25a)

 

∇ ⋅ B = 0 (25b)

 

∇ × (E + vr × B) = – 𝜕
𝜕t B (25c)

 

∇ × (H – vr × D)= J + 𝜌v + 𝜕
𝜕t D (25d)

Accompanying the four equations, the charge conservation law is also a 
must [11]: 

∯
S

J ⋅ ds + d
dt ∭

V
𝜌dr = 0 (26)
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By using the mathematical identity for a volume that expands at velocity v,

d
dt ∭

V
gdr = ∭

V
( 𝜕
𝜕t + v ⋅ ∇)gdr = ∭

V

𝜕
𝜕t gdr + ∯

S
gv ⋅ ds (26)

The charge conservation law becomes: 

∇ ⋅ (J + 𝜌v) + 𝜕
𝜕t 𝜌 = 0 (27)

It can be proved that Equations (25a–25d) and Equation (27) are entirely self-
consistent mathematically.

Traditionally, to make the MEs include the ‘anti-flux’ cases, besides the 
four physics laws, an additional requirement for the charge movement is 
the Lorentz force: F = q(E + v×B), using which the experimental results for 
‘anti-flux’ cases can be explained. In fact, this operation is to make up the 
short-coming of the MEs as caused by the assumption that there is no mov-
ing medium or observer. In reality, the Lorentz force is included in the 
Faraday’s law if one uses the proper definition of the electromotive force. 
Now in the MEs-f-MDMS, the Lorentz force is fully included in Equation 
(25c), therefore, there is no need to have the Lorentz force as an additional 
requirement.

7. Displacement vector for multiple moving objects

7.1. Mechano-driven polarization

In classical electromagnetism, medium boundary and shape are time-
independent, but the whole medium/object can move with a uniform speed 
along a straight line. In engineering applications, media can move with ac-
celeration along complex trajectories and their shapes may vary with time. 
The surfaces of the media may have electrostatic charges, so that their relative 
movement may introduce an additional polarization term. Therefore, we need 
to find an effective approach to describe the polarization if there are multiple 
moving objects that have relative movement in the reference frame.

Taking the triboelectric nanogenerator (TENG) as an example, it needs 
at least one moving medium to generate electrostatic charges as caused by 
contact-electrification and excited by an external mechanical force. As a re-
sult, the media will be polarized due to the electric field generated by the 
electrostatic charges. And this polarization is essentially different from the P
owing to an external electric field. In fact, variations in moving medium ob-
ject and medium shape lead to not only a local time-dependent charge density 
but also a local ‘virtual’ electric current density. To account for these phe-
nomena, an additional term Ps termed as the mechano-driven polarization is 
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Figure 6. Schematic diagram showing the three terms in the newly defined displacement vec-
tor D, and their represented space charges in the diagram. The charge density corresponding 
to Ps is that from surface contact electrification effect in TENG. Reproduced with permission
from Elsevier [15]. 

introduced [15,24]: 

DDD = 𝜀0EEE + PPP + PPPs = 𝜀0 (1 + 𝜒)EEE + PPPs (28)

where the first term ε0E is due to the field created by the free charges, which 
is the field for exciting the media. The vector P is the medium polarization, 
and it is responsible for the screening effect of the medium to the external 
electric field. And the added term Ps is mainly due to the existence of the 
surface electrostatic charges and the time variation in boundary shapes as 
well as the relative movement of multiple object (Figure 6). The charges that 
directly contribute to the term Ps are neither free charges, not polarization 
induced charges, instead they are intrinsic surface bound electrostatic charges 
as introduced by external mechanical triggering to the media. This term is 
necessary for developing the theory of TENG [25]. The corresponding space 
charge density is

𝜌s = –∇ ⋅ Ps (29a)
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the surface electrostatic charge density is 𝜎s = n ⋅ Ps; and the displace-
ment current density contributed by the bond electrostatic charges owing to 
medium movement is 

J s = 𝜕
𝜕t Ps (29b)

7.2. Calculation of Ps

If the distribution or configuration of the electrostatic charges vary with 
time, the mechano-driven polarization Ps is derived as follows. If the sur-
face charge density function 𝜎s(r,t) on the surfaces of the media is defined 
by a shape function of f(r,t) = 0, where the time is introduced to represent 
the instantaneous shape of the media, the equation for defining Ps, can be
expressed as [24] 

∇ ⋅ Ps = –𝜎s (r, t) 𝛿 (f (r, t)) (30)

where 𝛿(f (r, t)) is a delta function that is introduced to confine the shape 
of the media f (r, t) = 0 so that the polarization charges produced by non-
electric field are confined on the medium surface, and which is defined as 
follows: 

𝛿 (f (r, t)) = { ∞ if f (r, t) = 0
0 otherwise (31a)

 

∞

∫
–∞

𝛿 (f (r, t)) dn = 1 (31b)

where n is the normal direction of the local surface, and dn is an integral 
along the surface normal direction of the media. It is important to note that 
the shape of the dielectric media depends on time, because under external 
mechanical triggering, the shape and distribution of the dielectric media can 
vary, which is the reason for introducing the time t in f (r, t). If we define the 
‘potential’ induced by Ps by: 

Ps = –∇𝜑s (r, t) (32a)

 

∇2𝜑s (r, t) = 𝜎s (r, t) 𝛿 (f (r, t)) (32b)
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Using the Green function method, the solution is given by 

𝜑s(rrr, t)= 1
4𝜋 ∫∫∫

V

𝜎s(r′, t′)𝛿(f (r′, t′))
|r – r′|

dr′ = 1
4𝜋 ∫∫

s

𝜎s (r′, t′)
|r – r′|

ds′ (33)

where ds′ is an integral over the surface f(r,t) = 0 of the dielectric media. 
Therefore, the polarization arising from the surface charge density is 

PPPs = –∇𝜑s(rrr, t)= 1
4𝜋 ∫∫

s
𝜎s(r′, t′) r – r′

|r – r′|3 ds′+ 1
4𝜋c ∫∫

s
∫ 𝜕𝜎s(r′′, t′)

𝜕t′
r – r′

|r – r′|2 ds′

(34)
It is important to note that the shape of the dielectric boundaries/surfaces S(t) 
is a function of time since it is being triggered by an external force, so that the 
time differentiation also applies to the boundary of the dielectric media that 
changes under external mechanical triggering!

7.3. Maxwell’s equations for a mechano-driven multi-object system

If the motion induced mechano-polarization is considered, the MEs-f-
MDMS equations are given by [5]: 

∇ ⋅ DDD = 𝜌 (35a)

 
∇ ⋅ BBB = 0 (35b)

 
∇ × (E + vr × B) = – 𝜕

𝜕t B (35c)

 
∇ × (H – vr × D)= J + 𝜌v + 𝜕

𝜕t D (35d)

where v(t) is only time-dependent, but vr = vr (r, t) is more general; D = D′+
Ps and D′ = 𝜀0E + P. Note that Equation (35a–35d) are regarded as the gen-
eral MEs for shape-deformable, mechano-driven, slow-moving media at an 
arbitrary velocity field. This full MEs-f-MDMS describes the coupling among 
three fields: mechano–electricity–magnetism. The law of charge conservation 
is 

∇ ⋅ (J + 𝜌v) + 𝜕
𝜕t 𝜌 = 0 (35e)

The physical meaning of each term in Equations (35d) can be elaborated as 
follows. v  is the moving velocity of the origin of the moving reference frame 
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S′ in the rest frame S; vr  is the relative movement velocity of the medium in 
the S′ frame, Ps is the polarization introduced due to the relative movement 
of the objects in the S′ frame if there are more than one object present.

Our approach for deriving the MEs-f-MDMS started from physical prin-
ciples, which are more easy to understand and interpret. In the literature, the 
existing approaches are to use mathematical derivation in 4-D space based 
on Lorentz transformation for deriving the case there is a medium motion 
possibly with acceleration. In such a case, the derivation is rather complex 
and may not be straight to understand in most of cases [26,27]. Furthermore, 
we are not sure if the Lorentz transformation is applicable for space with 
medium boundary owing to the change of speed of light across the interface 
(see section 11.3). We follow the Feynman’s quotation that: Starting from the 
physics principles rather than starting from equations. This is because that 
physics is built based on the laws of nature that were first found and verified 
experimentally, and mathematics is just the language for expressing the na-
ture laws. We may not just simply rely on mathematical transformation but 
forget about the nature of physics.

8. Boundary conditions

The boundary conditions for D′ and B can be derived using the physical prin-
ciples of the Maxwell’s equations. The integral forms of Equations (35a–35b) 
can be received by using Stokes’ theorems [5]: 

∯
S

D ⋅ ds = ∭
V

𝜌f dr (36a)

 

∯
S

B ⋅ ds = 0 (36b)

 

∮
C

(E + vr × B)⋅dL = – ∬
s

𝜕
𝜕t B ⋅ ds (36c)

 

∮
C

(H – vr × D)⋅dL = ∬
s
(J + 𝜌v) ⋅ ds + ∬

s

𝜕
𝜕t D ⋅ ds (36d)

In Equations (36a–36d), the integral surfaces and paths can be arbitrary. 
Therefore, as for Equations (36a, 36b), we can choose the integral surface as a 
thin disc with its surfaces parallel to the boundary surface. As for Equations 
(36c, 36d), the line integral path can be a narrow rectangular circuit that is 



26  Z. L. WANG

parallel and perpendicular to the boundary surface. The fields represented 
by subscript 1 and 2 for the two sides of the boundary, the full boundary 
conditions can be received as follows: 

(D2 – D 1) ⋅ n = 𝜎 (37a)

 

(B2 – B 1) ⋅ n = 0 (37b)

 

n × (E2 – E 1 + vr2 × B2 – vr1 × B1) = 0 (37c)

 

n × (H2 – H1 – vr2 × D2 + vr1 × D1) = K s + 𝜎vvvs (37d)

where n is the surface normal direction, KKK s is the surface current density, 𝜎 is 
the surface free charge density, and vs is the moving velocity of the media in 
parallel to the boundary.

It should be noticed that the MEs-f-MDMS is utilized for the space in-
side of a moving medium; while outside the medium in vacuum space, the 
governing equation is the classical MEs. The general solution is made of a spe-
cial solution and a homogeneous solution. The general solution for the two 
regions meet at the interface and satisfy the boundary conditions. The move-
ment of the medium affect the electromagnetic field at its vicinity through the 
boundary conditions.

9. Conservation of energy

The conservation of energy in the mechano-electric-magnetic coupling sys-
tem is studied. Starting from Equations (35a-35d), the energy conservation 
process in this mechano-electric-magnetic coupling system is derived as 
follows. By applying E ⋅ to Equation (35d) and H ⋅ to Equation (35c), we have 

–E ⋅ 𝜕D
𝜕t – H ⋅ 𝜕B

𝜕t = –E ⋅ [∇ × (H – vr × D) – J f – 𝜌v] + H ⋅ [∇ × (E + vr × B)]
(38a)

which becomes [5] 

– 𝜕
𝜕t u–∇⋅S = E ⋅J +𝜌v ⋅E +{H ⋅ [∇ × (vr × B)] + E ⋅ [∇ × (vr × D)]} (38b)
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where S is the poynting vector, representing the energy per unit time, per unit 
area transported by the fields 

S = E × H (39a)

and u is the energy volume density of electromagnetic field, which can be 
given by 

𝜕
𝜕t u = EEE ⋅ 𝜕DDD

𝜕t + HHH ⋅ 𝜕BBB
𝜕t (39b)

Equation (38a) indicates that the decrease of the internal electromagnetic 
field energy within a volume plus the rate of electromagnetic wave energy 
radiated out of the volume surface is the rate of energy done by the field on 
the external free current and the free charges, plus the media spatial motion 
induced change in electromagnetic energy density. Importantly, the contri-
bution made by media movement can be regarded as a ‘source’ for producing 
electromagnetic energy.

10. Mathematical solutions of the MEs-f-MDMS

Inside the moving object, the general solution of the equations has two 
components: homogeneous solution that satisfies [15]: 

∇ ⋅ Dh′ = 0, (40a)

 

∇ ⋅ Bh = 0, (40b)

 

∇ × (Eh + vr × Bh)= – 𝜕
𝜕t Bh, (40c)

 

∇ × (Hh – vr × Dh′)= 𝜕
𝜕t Dh′. (40d)

and a special solution that satisfies 

∇ ⋅ Ds′ = 𝜌 – ∇ ⋅ Ps, (41a)

 

∇ ⋅ Bs = 0, (41b)
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∇ × (Es + vr × Bs)= – 𝜕
𝜕t Bs, (41c)

 

∇ × [Hs – vr × (Ds′ + Ps)] = J + 𝜌v + 𝜕
𝜕t

(Ds′ + Ps) . (41d)

It is apparent that both the homogenous solution and special solution are 
affected by the motion of the medium.

Outside of the object in vacuum, the special solution of the MEs is deter-
mined by: 

∇ ⋅ Dh′ = 0, (42a)

 

∇ ⋅ Bh = 0, (42b)

 

∇ × Eh = – 𝜕
𝜕t Bh, (42c)

 

∇ × Hh = 𝜕
𝜕t Dh′. (42d)

The special solution is given by 

∇ ⋅ Ds′ = 𝜌, (43a)

 

∇ ⋅ Bs = 0, (43b)

 

∇ × Es = – 𝜕
𝜕t Bs, (43c)

 

∇ × Hs = J + 𝜕
𝜕t Ds′. (43d)
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Figure 7. We use a flying disc to illustrate the applications of the MEs-f-MDMS for engineering 
purposes. The electromagnetic behavior inside the medium (the moving disc) is the MEs-f-MDMS, 
while that in vacuum is the classical MEs; the solutions of the two sets of equations meet the 
boundary conditions at the medium interfaces/surface. v(t) is the moving velocity of the origin 
of the S’ reference frame; vr(r,t) is the relative movement velocity of the object in the moving 
reference frame; Ps is the polarization introduced due to the relative movement of the objects in 
the moving reference frame if there are more objects to be considered.

The total solution is a sum of the homogeneous solution and the special so-
lution, and it needs to meet the boundary conditions as defined by Equations 
(37a-37d).

To illustrate the physical meaning of the MEs-f-MDMS and their correla-
tion with the MEs, we use Figure 7 to show the present physical meaning of 
each term and the related governing regions. If the instantaneous shape of a 
medium is defined by s(r, t) = 0, and the moving trajectory of the center of 
the moving reference frame is defined as r0(t) (such as the center of the disk 
in Figure 7), the governing equations are Equations (40a–40d) and (41a–41d) 
if r is within the volume of the surface s(r - r0(t), t) = 0; otherwise the gov-
erning equations are Equations (42a–42d) and (Eq 43a–43d). v is the moving 
velocity of the origin of the moving reference frame S′ in the rest frame S; 
vr is the relative movement velocity of the medium in the S′ frame; Ps is the 
polarization introduced due to the relative movement of the objects in the S′

frame if there are more than one object present. The solutions of the two sets 
of equations satisfies the boundary conditions given in Equations (37a–37d) 
at the surface defined by s(r - r0(t), t) = 0. This is the general principle for 
finding the numerical solutions for the entire system.

It should be noticed that the MEs-f-MDMS is utilized for the space inside of 
a moving medium; while outside the medium in vacuum space, the governing 
equation is the classical MEs. Therefore, all of the theory established for field 
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theory and relativity remains valid in vacuum, and there is no discrepancy 
regarding to the classical well known facts in physics.

10.1. Perturbation theory in time space

Although the MEs-f-MDMS provide a complete description about the elec-
tromagnetics of the system, their solutions are most important. Analytical 
solutions are only possible for very simple cases. For most of engineering ap-
plications, numerical calculations are essential. Since the theory was derived 
for low speed case v ≪ c, we can expand the full solution in the order of vr . 
With considering the dominant contribution made from stationary medium 
case, e.g. vr = 0 (the zeroth order), we can use the perturbation approach 
as developed in quantum mechanics for solving the MEs-f-MDMS. In the 
time/frequency space, the solution of the MEs-f-MDMS can be derived order 
by order using the perturbation theory in the order of vr . The higher order 
solution is received using the iteration method [15,16]:

We now use the perturbation theory to solve Equations (35a–35d) by 
expanding them in the order of λ as a parameter (λ = 1): 

E = E0 + 𝜆E1 + 𝜆2E2 + … , (44a)

 

D′ = D′
0 + 𝜆D′

1 + 𝜆2D′
2 + … , (44b)

 

H = H0 + 𝜆H1 + 𝜆2H2 + … , (44c)

 

B = B0 + 𝜆B1 + 𝜆2B2 + … (44d)

Substituting Equations (44a–44b) into Equations (35a–35d), the correspond-
ing equations for the same order of λ are:

For the zeroth order: 

∇ ⋅ D0′ = 𝜌0, (45a)

 

∇ ⋅ B0 = 0, (45b)
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∇ × E0 = – 𝜕
𝜕t B0, (45c)

 

∇ × H0 = J0 + 𝜕
𝜕t D0′, (45d)

where 

𝜌0 = 𝜌 – ∇ ⋅ Ps, (45e)

 

J0 = J + 𝜌v + ∇ × (vr × Ps) + 𝜕
𝜕t Ps. (45f)

Equations (45a–45d) have the form of classical Maxwell’s equations and they 
can be solved using various methods presented in text books, such as vector 
potentials, Hertz vectors, etc.

For the first order: 

∇ ⋅ D1′ = 0, (46a)

 

∇ ⋅ B1 = 0, (46b)

 

∇× E1 = F1 – 𝜕
𝜕t B1 (46c)

 

∇ × H1 = J1 + 𝜕
𝜕t D1′, (46d)

where 

F1 = –∇ × (vr × B0), (46e)

 

J1 = ∇ × (vr × D0′). (46f)
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By applying operator ∇× to Equations (46c, 46d), we have if we approximately 
have the constitutive relations D′

1 = 𝜀E1, and B1 = 𝜇 H1: 

∇2E1 – 𝜇𝜀 𝜕2

𝜕t2 E1 = –∇ × F1 + 𝜇 𝜕
𝜕t J1, (47a)

 

∇2H1 – 𝜇𝜀 𝜕2

𝜕t2 H1 = –∇ × J1–𝜀 𝜕
𝜕t F1. (47b)

Besides the solutions for the homogeneous component, the special solutions 
E1s and H1s of Equation (47a, 47b) are given as follows: 

E1s(r, t) = 1
4𝜋 ∫∫∫ 1

|r – r′|
[∇′ × F1(r′, t′)–𝜇 𝜕

𝜕t′J1(r′, t′)] dr′ (48a)

 

H1s(r, t) = 1
4𝜋 ∫∫∫ 1

|r – r′|
[∇′ × J1(r′, t′)+𝜇 𝜕

𝜕t′J1(r′, t′)] dr′ (48b)

where t′ is the retardation time t′ = t –
√

𝜇𝜀|r – r′|. The total solution has to 
match the boundary conditions. Please note that the calculation with includ-
ing the time retardation can be carried out using the method introduced in 
Jackson’s book in Section 5 [21].

The second order is: 

∇ ⋅ D2′ = 0, (49a)

 

∇ ⋅ B2 = 0, (49b)

 

∇× E2 = F2 – 𝜕
𝜕t B2 (49c)

 

∇ × H2 = J2 + 𝜕
𝜕t D2′, (49d)

where 

F2 = –∇ × (vr × B1), (49e)
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J2 = ∇ × (vr × D1′). (49f)

By the same token, we have 

∇2E2 – 𝜇𝜀 𝜕2

𝜕t2 E2 = –∇ × F2 + 𝜇 𝜕
𝜕t J2, (50a)

 

∇2H2 – 𝜇𝜀 𝜕2

𝜕t2 H2 = –∇ × J2–𝜀 𝜕
𝜕t F2. (50b)

which have the special solution E2s and H2s of: 

E2s(r, t)= 1
4𝜋 ∫∫∫ 1

|r – r′|
[∇′ × F2(r′, t′)–𝜇 𝜕

𝜕t′J2(r′, t′)] dr′ (51a)

 

H2s(r, t)= 1
4𝜋 ∫∫∫ 1

|r – r′|
[∇′ × J2(r′, t′)+𝜇 𝜕

𝜕t′F2(r′, t′)] dr′ (51b)

The higher orders can be calculated as well. The total solution needs to satisfy 
the boundary conditions.

10.2. Perturbation theory in frequency space

In general, the dielectric permittivity is frequency dependent, rather than a 
constant. To include the frequency in the entire theory, we use the Fourier 
transform and inverse Fourier transform in time and frequency space as 
defined by: 

a(r, 𝜔)= ∫
∞

–∞
dt ei𝜔t a(r, t) (52a)

 

a(r, t)= 1
2𝜋 ∫

∞

–∞
d𝜔 e–i𝜔t a(r, 𝜔) (52b)

The purpose of introducing frequency space is to simplify the relationship 
between the displacement field D′ and electric field E, magnetic field H and 
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magnetic flux density B as follows: 

D′(r, 𝜔)= 𝜀(𝜔)E(r, 𝜔), (53a)

 

B(r, 𝜔)= 𝜇(𝜔)H(r, 𝜔). (53b)

It is noted that we still use the simplest constitutive relations without consider-
ing the corrections made by media movement. Note, we use the same symbols 
to represent the real space and reciprocal space except the variables. Applying 
the Fourier transform to Equations (19-24) and use the perturbation method, 
we have

The zeroth order: 

∇ ⋅ D0′ (r, 𝜔) = 𝜌0 (r, 𝜔) , (54a)

 

∇ ⋅ B0 (r, 𝜔) = 0, (54b)

 

∇ × E0 (r, 𝜔) = i𝜔B0 (r, 𝜔) , (54c)

 

∇ × H0 (r, 𝜔) = J0 (r, 𝜔) – i𝜔D0′ (r, 𝜔) . (54d)

The first order: 

∇ ⋅ D1′ (r, 𝜔) = 0, (55a)

 

∇ ⋅ B1 (r, 𝜔) = 0, (55b)

 

∇ × E1(r, 𝜔) = F1(r, 𝜔) + i𝜔B1(r, 𝜔) (55c)

 

∇ × H1 (r, 𝜔) = J1 (r, 𝜔) – i𝜔D1′ (r, 𝜔) . (55d)
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The following equations can be derived: 

∇2E1 (r, 𝜔) + 𝜇𝜀𝜔2E1 (r, 𝜔) = –∇ × F1 (r, 𝜔) – i𝜔J1 (r, 𝜔) , (56a)

 

∇2H1 (r, 𝜔) + 𝜇𝜀𝜔2H1 (r, 𝜔) = –∇ × J1 (r, 𝜔) + i𝜔F1 (r, 𝜔) . (56b)

The full solution of the field has two components: homogeneous solution and 
the special solutions E1s and H1s, as given in follows 

E1s(r, 𝜔)= 1
4𝜋 ∫∫∫

exp [i𝜔√𝜇𝜀 |r – r′|]
|r – r′|

[∇′ × F1(r′, 𝜔)+i𝜔J1(r′, 𝜔)] dr′

(57a)
 

H1s(r,𝜔)= 1
4𝜋 ∫∫∫

exp [i𝜔√𝜇𝜀 |r – r′|]
|r – r′|

[∇′ × J1(r′ – 𝜔)–i𝜔F1(r′ – 𝜔)] dr′

(57b)
The second order: 

∇ ⋅ D′
2(r, 𝜔) = 0, (58a)

 

∇ ⋅ B2 (r, 𝜔) = 0, (58b)

 

∇ × E2(r, 𝜔) = F2(r, 𝜔) + i𝜔B2(r, 𝜔) (58c)

 

∇ × H2 (r, 𝜔) = J2 (r, 𝜔) – i𝜔D2′ (r, 𝜔) . (58d)

Similarly: 

∇2E2 (r, 𝜔) + 𝜇𝜀𝜔2E2 (r, 𝜔) = –∇ × F2 (r, 𝜔) – i𝜔J2 (r, 𝜔) , (59a)

 

∇2H2 (r, 𝜔) + 𝜇𝜀𝜔2H2 (r, 𝜔) = –∇ × J2 (r, 𝜔) + i𝜔F2 (r, 𝜔) . (59b)

The full solution of the field has two components: homogeneous solution and 
the special solution solutions E2s and H2s, as given in follows
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E2s(r, 𝜔)= 1
4𝜋 ∫∫∫

exp [i𝜔√𝜇𝜀 |r – r′|]
|r – r′|

[∇′ × F2(r′, 𝜔)+i𝜔J2(r′, 𝜔)] dr′

(60a)
 

H2s(r, 𝜔)= 1
4𝜋 ∫∫∫

exp [i𝜔√𝜇𝜀 |r – r′|]
|r – r′|

[∇′ × J2(r′, 𝜔)–i𝜔F2(r′, 𝜔)] dr′

(60b)

10.3. Vector potential method

10.3.1. Assumptions
We now present the solution of the MEs-f-MDMS if the motion of the 
object is dominated by a solid translation term, and the rotation and spatial-
dependent term vt(r, t) is small. This case occurs for a shape deformable 
medium that moves at a highly accelerated speed, so that using the standard 
vector calculation, we have: 

∇ × (vr × B) = vr(∇ ⋅ B)–B(∇ ⋅ vr)+(B ⋅ ∇)vr – (vr ⋅ ∇)B
= –B(∇ ⋅ vr)+(B ⋅ ∇)vr – (vr ⋅ ∇)B ≈ –(vr ⋅ ∇)B (61a)

 

∇ × (vr × D) = vr(∇ ⋅ D)–D(∇ ⋅ vr)+(D ⋅ ∇)vr – (vr ⋅ ∇)D
= vr𝜌 – D(∇ ⋅ vr)+(D ⋅ ∇)vr – (vr ⋅ ∇)D ≈ 𝜌vr – (vr ⋅ ∇)D

(61b)

Equations (35a–35d) become: 

∇ ⋅ D′ = 𝜌a (62a)

 

∇ ⋅ B = 0 (62b)

 

∇ × E ≈ – D
Dt B (62c)

 

∇ × H ≈ Ja + D
Dt D′ (62d)
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where: 

D
Dt = 𝜕

𝜕t – (vr ⋅ ∇) (62e)

 

𝜌a = 𝜌 – ∇ ⋅ Ps (62f)

 

Ja = J + 𝜌vt + D
Dt Ps (62g)

The energy conservation law becomes: 

– D
Dt u – ∇ ⋅ S = E ⋅ J (63a)

 

D
Dt u = E ⋅ DD′

Dt + H ⋅ DB
Dt (63b)

E⋅J f  is a source term that transfers energy from (to) the electromag-
netic field to (from) the charged medium that interacts with the field. The 
mechanical energy of the charged medium increases (decreases) accordingly.

10.3.2. Vector potential solutions
We now define the vector potential A and 𝜑 as follows: 

B = ∇ × A (64a)

and a new scalar electric potential 𝜑 for electrostatics, we define 

E= – ∇𝜑 – D
Dt A (64b)

For simplicity, we approximately use the constitutive relations of D′ = 𝜀E and 
B = 𝜇H . Substitute Equations (64a, 64b) into Equations (62a–62d), we have, 

∇2A – 𝜀𝜇 D2

Dt2 A = –𝜇Ja (65a)

 

∇2𝜑 – 𝜀𝜇 D2

Dt2𝜑 = –
𝜌a
𝜀 (65b)
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where D2

Dt2
= [ 𝜕

𝜕t
– (vr ⋅ ∇)] [ 𝜕

𝜕t
– (vr ⋅ ∇)] = 𝜕2

𝜕t2
– 2 (vr ⋅ ∇) 𝜕

𝜕t
+

(vr ⋅ ∇) (vr ⋅ ∇) ≈ 𝜕2

𝜕t2
–2 (vr ⋅ ∇) 𝜕

𝜕t
 and the Lorentz gauge must be satisfied: 

∇ ⋅ A + 𝜀𝜇 D
Dt 𝜑 = 0 (65c)

These are nonhomogeneous wave equations for vector potential A and 𝜑, 
which are non-linear differential equations, the total solutions of which 
may have to be solved numerically, and the total solutions must satisfy the 
boundary conditions as defined in Equations (37a–37d).

10.3.3. Expanded 4-D space
We express the format of the MEs-f-MDMS into tensor format. We now use 
the classical expressions of following quantities for electrodynamics, the anti-
symmetric strength tensor of electromagnetic field [14], 

F𝛼𝛽 = 𝜉𝛼A𝛽 – 𝜉𝛽A𝛼 (66a)

 

F𝛼𝛽 = 𝜉𝛼A𝛽 – 𝜉𝛽A𝛼 (66b)

where 𝛼, 𝛽 = (1,2,3,4), and the newly defined operators are 

𝜉𝛼 = (1
c

D
Dt , – ∇) (67a)

 

𝜉
𝛼

= (1
c

D
Dt , ∇) (67b)

 

A𝛼 = (c𝜑, A) (67c)

 

A𝛼 = (c𝜑, –A) (67d)

One can prove 

F𝛼𝛽 =
⎛⎜⎜⎜⎜⎜
⎝

0 –Ex/c
Ex/c 0

–Ey/c –Ez/c
–Bz By

Ey/c Bz
Ez/c –By

0 –Bx
Bx 0

⎞⎟⎟⎟⎟⎟
⎠

(68a)
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F𝛼𝛽 =
⎛⎜⎜⎜⎜⎜
⎝

0 Ex/c
–Ex/c 0

Ey/c Ez/c
–Bz By

–Ey/c Bz
–Ez/c –By

0 –Bx
Bx 0

⎞⎟⎟⎟⎟⎟
⎠

(68b)

where c = cm = 1/(𝜇ε)1/2. We can prove: 

𝜉𝛼F𝛼𝛽 = 𝜇J𝛽 (69)

where J𝛽 = (c𝜌a,Ja). This is the Maxwell’s equations for a mechano-driven 
system. Note Equation (69) is the same as that for the classical MEs except 
the operator 𝜕𝛼 is replace by 𝜉𝛼.

10.3.4. The Lagrangian function
We now derive the Lagrangian L for the Maxwell’s equations for a mechano-
driven system. Ʌ is assumed to be a function of the density of the Lagrangian 
of the system Ʌ(A𝛼, 𝜉𝛼A𝛽) We vary the action 

𝛿 ∫
∞

–∞
Ldt = 𝛿 ∬

∞

–∞
Λ (A𝛼, 𝜉𝛼A𝛽) drdt = 0 (70)

which gives 

∬
∞

–∞
[ 𝜕Λ

𝜕A𝛼
𝛿A𝛼 + 𝜕Λ

𝜕(𝜉𝛼A𝛽)𝛿(𝜉𝛼A𝛽)] drdt = 0 (71)

Now we look at the second term and integrate by part over (ct, x, y, z) [e.g. 
(x0, x1, x2, x3)],  respectively, with considering the vanishing of the function 
at infinity. If the medium motion is a rigid translation 𝛿v (t) that is only time 
dependent, we have 

∬
∞

–∞
[ 𝜕Λ

𝜕A𝛼
𝛿A𝛼] drdt – ∬

∞

–∞
{𝜉𝛼 [ 𝜕Λ

𝜕(𝜉𝛼A𝛽)] 𝛿A𝛽} drdt = 0 (72)

We have the Lagrangian relation: 

𝜕Λ
𝜕A𝛽

– 𝜉𝛼
𝜕Λ

𝜕(𝜉𝛼A𝛽) = 0 (73)

The density of the Lagrangian for the electromagnetic field is given by [28] 

Λ = F𝛼𝛽 F𝛼𝛽 + 𝜇 J𝛼A𝛼 (74)
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Figure 8. Schematic diagram showing an approximated method for decompose a non-inertia 
movement as a movement in an inertia frame plus a correction in non-inertia frame.

Substituting Equation (45) into Equation (44), we have the Maxwell’s equa-
tions for a mechano-driven system 

𝜉𝛼F𝛼𝛽 = 𝜇 J𝛽 (75)

10.3.5. An approximated approach
If the moving velocity of the medium is a constant for inertial frame, the rela-
tionship can be easily derived from special relativity under slow speed limit as 
E

′
= E + v0 × B. We now consider a case in which the movement of the object 

has a constant component v0 and a time-dependent rotation component vr , 

v(r, t) = v0 + vr(r, t) (76)

where the term vr(r, t) contains both rotation and small component of rigid 
translation. We now consider a case that the translation velocity is the domi-
nant component so that vr ≪ v0 (Figure 8). The choice of a constant moving 
velocity as the basic reference frame allow us to introduce the approximated 
constitutive relations for non-inertia frame [14]. If we approximately use the 
constitutive relations derived for a constant velocity of motion: 

D ≈ 𝜀E – 𝜀v0 × B (77a)

 

H ≈ B/𝜇 + 𝜀v0 × E (77b)
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the MEs for a general case can be stated as follows: 

𝜀∇ ⋅ E = 𝜌 + 𝜀∇ ⋅ (v0 × B) (78a)

 

∇ ⋅ B = 0 (78b)

 

∇ × (E + vr × B)= – 𝜕
𝜕t B (78c)

∇ × (B/𝜇 + 𝜀v0 × E – 𝜀vr × E) = J f + 𝜌v0 + 𝜕
𝜕t

(𝜀E – 𝜀v0 × B)

≈ J f + 𝜌v0 + 𝜀 𝜕
𝜕t E + 𝜀v0 × (∇ × E)

Since

∇ × (v0 × E) = v0 (∇ ⋅ E) – (v0 ⋅ ∇) E

∇ (v0 ⋅ E) = (v0 ⋅ ∇) E + v0 × (∇ × E)

v0 × (∇ × E)=∇ (v0 ⋅ E) – (v0 ⋅ ∇) E = ∇ (v0 ⋅ E) + ∇ × (v0 × E) – 𝜌v0/𝜀

We have 

∇ × (B/𝜇 – 𝜀vr × E) = J + 𝜀∇ (v0 ⋅ E) + 𝜀 𝜕
𝜕t E (78d)

Equations (78a–78d) now have (E, B) as the variables and they can be solved 
approximately using the classical methods. It is interesting to note that there 
is an additional term 𝜀∇ (v0 ⋅ E)appears as a new kind of current in Equation 
(78d). An additional term of 𝜀∇ ⋅ (v0 × B) appears in Equation (78a) as a new 
space charge. These terms means that the relative translation movement of the 
media/objects can produce electromagnetic induction effect, and the result is 
expressed as additional sources distributed inside the medium for generating 
electromagnetic wave in space as observed in the Lab frame.
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Figure 9. Two fundamental different approaches for developing the electrodynamics of a moving 
media system: special relativity through the Lorentz transformation for electromagnetic phenom-
ena of point charges in vacuum space; the MEs-f-MDMS directly derived from the integral forms of 
the four physics laws in Galilean space and time, for the case of moving media with specific sizes 
and shapes and even acceleration. This is probably the most effective approach for engineering 
applications. 

11. Relationship with special relativity

11.1. For motion in free soace and for moving objects

In general, there are two fundamental approaches for developing the elec-
trodynamics of a moving medium (Figure 9). The first method is through 
Einstein’s relativity and Minkowski constitutive equations, forming the basis 
of field theory. The relativity approach works extremely well for describing the 
electromagnetic behavior in vacuum, especially for interspace without con-
sidering the boundary of media, so that the speed of light remains invariant 
in vacuum.

The second approach is based on the Galilean transformation, which 
works well for engineering applications. The moving objects or media have 
shapes, volumes and boundaries. The MEs-f-MDMS is to describe the elec-
tromagnetic behavior of the media that move along complex trajectory with 
arbitrary velocities by neglecting relativistic effects. Both approaches are for 
two distinctive purposes and they co-exist without any conflict with each 
other.

11.2. Are Maxwell’s equations covariance in moving medium?

If a point charge moves at an arbitrary speed in vacuum without the presence 
of any boundaries, its electric field and magnetic fields can be calculated us-
ing the Liénard-Wiechert potentials. The electric field of the moving charge 
contains two parts: the generalized coulomb field that does not dependent 
on the acceleration (also known as the velocity field), and the radiation field 
that is proportional to the acceleration. The free charge distribution and 
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the instantaneous current produced by a group of moving point charges
are represented by: 

𝜌 = ∑iqi𝛿(r–ri(t)) (79a)

 

J = ∑iqivi(t)𝛿(r–ri(t)) (79b)

where ri (t) and vi (t) are the instantaneous position and moving ve-
locity of the point charge qi. The distribution of field in space can be 
calculated by substituting Equations (79a-79b) into the Liénard-Wiechert
potentials.

A point charge is just a point without volume and boundary. Lorentz trans-
formation is ideal for treating the electrodynamics of moving point charges in 
vacuum. However, a medium is not just an aggregation of point charges, but 
composed of atoms with special symmetry, geometrical, shape and size. Ow-
ing to its unique crystal structure and chemistry, a medium typically has the 
characteristics of dielectric, electrical, magnetic and elastic properties. There-
fore, it has different electrical, optical, thermal and mechanical properties. For 
a moving medium that has electrostatic charges on surfaces, the approach of 
Liénard-Wiechert potentials cannot be utilized to calculate its electromag-
netic fields. This is one of the reasons why we have to expand the MEs to 
study the electromagnetic behavior of the motion media/object that could be 
time and even space dependent.

To represent the characteristics of media/materials in electromagnetic the-
ory, the electromagnetic excitation is described by electric (P) and magnetic 
(M) polarizations, respectively, which was first developed over a century ago. 
Deepening our understanding of the electrodynamics of moving media is 
an important research program, which is generally through the macroscopic 
MEs and Minkowski material equations. In general, inhomogeneities of the 
velocity of a moving medium, if it is shape deformable or in liquid state, gen-
erates an inhomogeneity of the refractive index. If a medium is in a static 
state, the propagation of electromagnetic wave passing through it is gov-
erned by the three parameters including permittivity (ε), permeability (𝜇), 
and conductivity (𝜎). But each of these parameters depends heavily on the 
frequency of the electromagnetic wave we are considering. Electromagnetic 
waves with different frequencies travel at the same speed in vacuum, but they 
interact with media differently due to dielectric dispersion. So, variations of 
the permittivity, permeability and/or refractive index lead to the scattering of 
electromagnetic radiation of the medium.

The discussions presented above may indicate that the covariance of the 
MEs may not hold if there is complex media distribution in space. It would be 
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correct to state that Maxwell’s equations perfectly fit to be Lorentz-covariant 
if the point charge related electromagnetic phenomena and observations are 
made in vacuum, otherwise the covariance may not hold.

Furthermore, we now consider the constitutive relation for a realistic 
medium. If one ignores the dependence of dielectric permittivity on the mo-
mentum transfer term q, for a simple linear medium, in the frequency space, 
we have 

D(r, 𝜔) = 𝜀(𝜔)E(r, 𝜔) (80a)

In time space, and using the inverse Fourier transformation, 

D(r, t) =

∞

∫
–∞

𝜀(t – t′)E(r, t′)dt′ (80b)

This means that if we consider the anisotropic property of a dielectric media 
and its frequency dependence, the constitutive relationship between the dis-
placement vector D and electric field E cannot be simply treated as D(r, t) =
𝜀E(r, t) unless ε is a constant. Therefore, for a general case, the covariance 
of the MEs holds exactly in vacuum but may not hold exactly in dielectric 
medium unless the medium’s property is independent of the excitation fre-
quency 𝜔, which means that there is no dispersion dependence. Such cases 
may not be true for practical materials. For an inhamogenous material, such 
as ferroelectric or piezoelectric crystals, the dielectric ε(𝜔) is described using 
a tensor, depending on the orientation of the medium. Therefore, the covari-
ance of the MEs holds exactly for the electromagnetic phenomena occurring in 
vacuum.

11.3. About Lorentz transformation

The special relativity was proposed based on two hypotheses: I. The laws of 
physics take the same form in every inertial frame; II. The speed of light in 
vacuum is the same in every inertial frame. Special relativity is the theory 
of how different observers, moving at constant velocity with respect to one 
another, report their experience of the same physical event. General relativity 
addresses the same issue for observers whose relative motion is completely 
arbitrary. Therefore, Lorentz transformation is exact if all of the electromagnetic 
phenomena are in vacuum.

A key quantity in the Lorentz transformation is the speed of light c, be-
cause space and time are unified. If all of the moving point charges are in 
vacuum, the c0 should be the speed of light in vacuum, and the situation 
should be easy because a point charge has no volume and boundary, and they 
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can be represented by a set of points with charge density and related current 
(Equations (69a,69b)). The MEs are covariant because of the use of Lorentz 
transformation.

However, the situation is complex if there is medium. If the entire space 
is filled with uniform medium so that the speed of light would be cm = c0/n, 
where n is the refraction index, the corresponding Lorentz transformation 
inside the medium would be [29]: 

x′
m = 𝛾m (x – v0t) , y′

m = y, z′
m = z; (81a)

 

t′
m = 𝛾m (t – xv0/c2

m) (81b)

 

𝛾m = 1/ (1 – v2
0/c2

m)1/2 (81c)

Or: 

x = 𝛾m (xm′ + v0tm′) , y = ym′, z = zm′; (81d)

 

t = 𝛾m (t′
m + x′

mv0/cm
2) (81e)

Equations (81a–81c) hold if the medium is isotropic, and the dielectric con-
stant and magnetic permittivity are constants, so that the speed of light in the 
medium is independent of the observation frame.

Now let’s consider another case, in which the space in x′>0 zone in the 
moving frame S′ is filled with a uniform and linear dielectric medium, and 
it is moving at a constant velocity v0. The zone at x′<0 is vacuum. How the 
Lorentz transformation would be constructed to ensure the space and time 
continuous at the medium boundary? In practical engineering applications, 
part of the space is filled up with dielectric media/objects and part is vacuum, 
what would be the correct expression of Lorentz transformation? How do we 
express the unification of space and time in such a case? This question has 
to be investigated. Alternatively, it may indicate that the Lorentz transforma-
tion applies only to vacuum case and it may not valid if there are medium 
boundary in space.

To have a first try, Wang made a proposal with introduction of following 
expanded Lorentz transformation for the above case [5]. If we consider the 
dilation of time and contraction of length in relativity, an expanded Lorentz 
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transformation for the space and time (r′
m, t′

m) inside the moving medium in 
x′>0 zone could be suggested as: 

x = 𝛾0 (x′
m + v0t′

m) , y = y′
m, z = z′

m; (82a)

 

t = 𝛾0(t′
m + x′

mv0/c2
m) (82b)

Or: 

xm′ = 𝛾2
m (x – v0t) /𝛾0, ym′ = y, zm′ = z; (82c)

 

t ’
m = 𝛾 2

m (t – xv0/c2
m) /𝛾0 (82d)

Here we also assume that the S′ is moving along the +x axis at speed of v0. 
Equation (82) not only satisfies the continuation of the space and time at 
x′

m = 0 boundary, but also approaches the associated standard Lorentz trans-
formations by replacing cm → c0 and c0 → cm for the cases of the entire 
space being vacuum and filled with a medium, respectively. One must point 
out that Equations (82a–82d) are just theoretical postulations, and if they are 
correct or not remain to be verified by experiments!

As shown in Figure 10 for a more complex case that involves accelerated 
motion with moving velocity much smaller than the speed of light, the field 
observed by Bob in the Lab frame and that by Alice may not be directly 
correlated by the Lorentz transformation. The equations used by Bob for de-
scribing the electromagnetic behavior are: the classical MWs equations in 
vacuum space; for the space inside the moving object, MEs-f-MDMS. In the 
reference frame in which Alice is located that moves with the moving ob-
ject, since the medium is stationary for Alice, the electromagnetic behavior 
to be used by Alice are the MEs for the entire space. The full solutions of 
the equations inside and outside the medium have to satisfy the boundary
conditions.

12. Comparison with existing theories

12.1. Minkowski formulation

For a system that are made of media/objects whose shape and volumes are 
time-independent, if the system is moving at a constant velocity along a 
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Figure 10. In the reference frame where Bob sites, there is an object/medium that is moving with 
acceleration and rotation. (a) The equations used by Bob for describing the electromagnetic be-
havior are: the classical MWs equations in vacuum space; for the space inside the moving object, 
MEs-f-MDMS. (b), in the reference frame in which Alice is located that moves with the moving ob-
ject, since the medium is stationary for Alice, the electromagnetic behavior to be used by Alice ae 
the MEs for the entire space. The full solutions of the equations inside and outside the medium 
have to satisfy the boundary conditions.

straight line, the field observed in the rest reference frame and that in the 
moving reference frame are correlated by the Minkowski formulation for 
v0 ≪ c: 

E′ ≈ E + v0 × B (83a)

 

B′ ≈ B – v0 × E/c2 (83b)

 

D′ ≈ D + v0 × H/c2 (83c)

 

H′ ≈ H – v0 × D (83d)

The Minskowski theory works best for medium that is not deforming, rotating 
or accelerating with respect to the Lab frame. In this case, both the Lab frame 
and moving frame are inertia frames, so that the covariance of the Maxwell’s 
equation preserves. However, such theory may not work well for deforming, 
accelerating media. In this case, the MEs-f-MDMS theory is required.
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12.2. Chu formulation

The theory developed by Chu is for a case by considering a medium that may 
have a deformable shape and move with acceleration. His main idea is to con-
sider an additional current source introduced by the moving medium [30]. He 
specifically introduced a term in the Ampere-Maxwell’s law to represent the 
current introduced by medium movement, the expanded Maxwell’s equtions 
are described by: 

𝜀0∇ ⋅ E = 𝜌 – ∇ ⋅ P (84a)

 

𝜇0∇ ⋅ H = 0 (84b)

 

∇ × E = – 𝜇0
𝜕
𝜕t H (84c)

 

∇ × H = J + Jp + 𝜕
𝜕t

(𝜀0E + P) (84d)

where 

Jp = –∇ × (v × P) (84e)

Chu treated a moving medium by considering the motion induced po-
larization in a medium, so that an additional current term Jp appears in 
Ampere–Maxwell law, while no change in the rest of the three equations. He 
derived this current term by only considering the effect of the moving bound-
ary of the integral surface on the medium polarization term P in the integral 
form of the Ampere–Maxwell law [29]: 

∮
C

H ⋅ dL = ∬
s

J ⋅ ds + 𝜀0
d
dt ∬

s
E⋅ds + d

dt ∬
s

P ⋅ ds (85)

Chu’s theory is different from the MEs-f-MDMS in two points. First, Chu con-
sidered only the boundary surface movement in the mathematical derivation 
of d

dt
∬

s
P ⋅ ds using the mathematical identity as given in Equation (12), but 

not in the calculations of d

dt
∬

s
E ⋅ ds in Equation (85) and d

dt
∬

s
B ⋅ ds in the 

Faraday’s law, so that the entire mathematical calculations are not fully con-
sistent. Therefore, in Equation (84c), the correction of the electric field on the 
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magnetic field term 𝜀0∇ × (v × E) is missed, which may miss an electromag-
netic induction term owing to the medium movement to the electric field. 
Second, he used the magnetic field in the Lab frame H  to replace the mag-
netic field in the moving frame H′, as presented in Equation (21), resulting in 
the missing of the correction term of the magnetic field on the electric field 
in Equation (73c). This treatment uses the Ampere’s law for the Lab frame 
to replace that in the moving frame. We believe that the two points may be 
the major shortcomings in his theoretical approach, and the MEs-f-MDMS 
is more complete and comprehensive than Chu formulation for dealing the 
electromagnetic behavior of medium that may have a deformable shape and 
move with acceleration. A comparison between the Minkowski’s theory and 
the Chu formulation is given in [29].

12.3. Wang formulation

For easy notation, we refer the MEs-f-MDMS equations as Wang formulation 
[5]: 

∇ ⋅ D = 𝜌 (86a)

 

∇ ⋅ B = 0 (86b)

 

∇ × (E + vr × B) = – 𝜕
𝜕t B (86c)

 

∇ × (H – vr × D)= J + 𝜌v + 𝜕
𝜕t D (86d)

Now let’s assume a simple case in which the medium is moving as a solid 
translation v(t) without rotation or shape deformation, so that vr = 0. In this 
case, the Equations (86a–86d) becomes: 

∇ ⋅ D = 𝜌 (87a)

 

∇ ⋅ B = 0 (87b)
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∇ × E = – 𝜕
𝜕t B (87c)

 

∇ × H = J + 𝜌v + 𝜕
𝜕t D (87d)

This set of equations is exactly the same as the standard MEs only with a con-
duction current introduced in the Ampere–Maxwell law. Therefore, the MEs 
hold even when the medium that moves as a solid translation even with ac-
celeration. If the medium movement is a constant in inertia reference frame, 
the result from the Wang formulations is entirely consistent with that of the 
Minkowski’s theory under low speed approximation.

We now consider the approximated constitutive relations for the Wang 
formulations if the fields are expressed in two quantities. From Equation 
(83a–83d), and we use the constitutive relations in the rest frame for the 
medium, D′ = 𝜀E, and B′ = 𝜇H , we approximately have: 

D ≈ 𝜀E + 𝜀𝜇 v × H (88a)

 

B ≈ 𝜇H – (𝜀𝜇 – 𝜀0𝜇0) v × E (88b)

Note, the term (𝜀𝜇 – 𝜀0𝜇0) is a result of using the Lorentz transformation in 
vacuum for medium case. We are not sure if this make sense in physics or not, 
but do appear in literature as a result of mathematical calculation [17].

13. Contributions made by the MEs-f-MDMS

This paper systematically reviews the recent progress made in developing the 
Maxwell’s equations for a mechano-driven media system (MEs-f-MDMS), 
which are utilized to describe the electromagnetism of multi-moving-media. 
The fundamental theoretical advances are summarized as:

(a) Based on the integral forms of the four physics laws, and in the Galilean 
space-time, the MEs-f-MDMS are derived to describe the electrody-
namics of slow-moving media that may move with acceleration.

(b) The MEs-f-MDMS are typically used to reveal the dynamics of an 
electromagnetic field for a general case, in which the medium has a 
time-dependent volume, shape, and boundary and may move in an 
arbitrary velocity field vr(r, t) in a non-inertial system.
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(c) By neglecting the relativity effect, the MEs-f-MDMS are applica-
ble to reveal the electrodynamics of a mechanical force-electricity-
magnetism system.

(d) The total energy of electricity and magnetism is not conserved, since 
an external mechanical energy is input; however, the total energy of the 
closed mechano-driven media system is conserved.

(e) The charged moving media are regarded as the sources distributed in-
side the media for generating electromagnetic radiation in space (a 
motion-generated electromagnetic field). The created electromagnetic 
wave within the moving media can be described by the expanded MEs-
f-MDMS, and its propagation in space satisfies the standard MEs and 
special relativity; they meet at the medium interface as governed by the 
boundary conditions.

(f) Different from the methods of relativity electrodynamics that the elec-
tromagnetic fields in the Lab frame and the co-moving frame are 
correlated by the Lorentz transformation provided the MEs are covari-
ant. The expanded MEs-f-MDMS are for the case that the observe is in 
the Lab frame, while the media are moving at complex velocities along 
varies trajectories. In other words, all fields are expressed in the vari-
ables in the Lab frame, which is more useful for describing engineering 
problems.

(g) Because the speed of light inside media cm is generally lower than c0, 
there is no need to worry about exceeding the speed of light in vacuum 
c0 even the medium is moving. Once the electromagnetic wave is gen-
erated from the mechano-driven media system, its traveling outside 
the medium is governed by the classical MEs, regardless of whether 
the media are moving or not.

(h) The expanded MEs-f-MDMS could describe the electrodynamics of 
fluid/liquid media, because it has been proved that these equations 
can describe the electromagnetism of the mechano-driven system in 
the non-inertial frame with acceleration and even time-dependent 
volume, shape, and boundary.

(i) If the medium moves at a constant velocity so that v = constant and 
vr = 0, MEs-f-MDMS resume the format of the classical MEs, so there 
is no logic inconsistency with the existing theory.

(j) The MEs were derived by assuming that the objects/medium are at 
stationary with respect to the observer. The covariance of the MEs is 
thus preserved under Lorentz transformation. However, since MEs-
f-MDMS were derived by assuming that the objects have accelerated 
motion with respect to the observer, they thus may not be covariant 
under Lorentz transformation. Therefore, Lorentz transformation is 
applicable if there are no medium boundaries in space. How to expand 



52  Z. L. WANG

the Lorentz transformation to cases there are medium boundaries re-
main to be further studied, although we have made a first proposal (see 
Equation (82)).

In comparison to the classical MEs, the MEs-f-MDMS has made following 
contributions:

1. Accelerated motion in a non-inertia reference frame vs that with a uni-
form motion along a straight-line in inertia reference frame;

2. Electromagnetism that includes the Feynman ‘anti-flux rule’ examples vs 
that exclude such cases;

3. Electrodynamics for multi-moving-media vs that for one moving 
medium; and

4. The entire field (both near field and far-field) electrodynamics vs the far-
field plus partial near-field electrodynamics.

Much of the traditional research is focusing on the far-distance transmis-
sion and reflection of electromagnetic waves, for instance wireless communi-
cation & propagation, antenna, radar, and so on, demonstrating through the 
special solutions of the MEs. The effects from the motion status of the elec-
tric current source and the mechanical action for generating the current to 
the distribution of electromagnetic fields in the vicinity have been ignored. 
Such near-field effect can be important for new technological applications in 
short-range wireless sensing. MEs-f-MDMS provide an accurate and prac-
tical method to systematically investigate both the far-field electromagnetic 
behavior and the near-field electromagnetic behavior for engineering appli-
cations.

MEs-f-MDMS is a unification of the theory for electromagnetic genera-
tor/motor and the theory of electromagnetic waves (Figure 11). The theory 
of electromagnetic generator is to use the rotation of a rotor to cut through a 
magnetic field, so that the mechanical energy is converted into electric power. 
What is most important is the electric current and voltage carried by the con-
duction coil, disregard the electromagnetic wave radiated to the space nearby. 
The MEs are about the electromagnetic waves radiated if an oscillating cur-
rent is supplied. Once the observation point is close to the electromagnetic 
generator, near to which the rotation of the rotor is quite dominant, the MEs 
can predict the electromagnetic behavior arising from the current conducted 
in the metal wire, but it may not precisely predict the effect of the rotating 
rotor to the field distributed nearby. This is why we need the MEs-f-MDMS.

14. Potential applications

Previously, the MEs can be effectively calculate the electromagnetic behav-
ior of stationary media, which covers most of the scenarios in physics and 
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Figure 11. The MEs-f-MDMS are a unification of the theory for electromagnetic generator/motor 
and the theory of electromagnetic waves, so that the field in the entire space can be calculated. 
MEs-f-MDMS are likely to make a key difference in the regions near the moving objects, which 
may not be fully covered by the classical MEs. This is the contribution of the MEs-f-MDMS to the 
fundamentals of electrodynamics.

engineering applications. The electromagnetic radiation produced by an ac-
celerated moving object can by calculated using the MEs-f-MDMS, such as 
the electromagnetic radiation distributed around a power generator or a wind 
mill. In this case, the rotation of the medium is likely to introduce additional 
component in the near-field field. The movement of the object is like to be a 
source for generating electromagnetic wave, and the propagation of the waves 
in the space is governed by the classical Maxwell’s equations.

Traditionally, electromagnetic waves are usually generated by oscillating 
current through an open antena. An important application of MEs-f-MDMS 
is to generate low-frequency electromagnetic wave using the relative rota-
tion of media, such as rotation mode TENG, so that the radiated wave can 
reach a far distance in medium such water. In such a case, one can gener-
ate low-frequency signal by a confined device that is much smaller than the 
size of traditional antenna. This could find application for communications 
underwater.

In today’s technology, the moving velocity of an object can be multiple 
times of the speed of sound. In such a case, the movement of the object can be 
seriously affect the phase of the electromagnetic waves. For a jet that is flying 
at a speed of 3 km/s and is located at a distance of 100 km, the electromagnetic 
wave will take 0.3 ms to reach the aircraft surface. With considering the time 
required from signal processing the recording, the elapsed time is in the order 
of 1–5 ms, during which the aircraft would fly for a distance of 3–15 m, which 
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could be longer than the length of the jet. In this case, if we donot consider 
the movement of the jet in the theoretical modeling, the calculation result can 
be far from the realistic case for traditional Radar to capture the position of 
the flying jet. If one uses the phase information for Radar detection, such a 
distance would create a gigantic phase shift if the communication is in the or-
der of GHz. We anticipate that MEs-f-MDMS would find more applications 
in engineering. 

Acknowledgments

Thank to Drs. Jiajia Shao and Wei Tang for many stimulating discussions.

Disclosure statement

No potential conflict of interest was reported by the author.

ORCID

Zhong Lin Wang http://orcid.org/0000-0002-5530-0380

References

[1] Minkowski H. The principle of relativity. Calcutta: University Press; 1920.
[2] Minkowski H. Das Relativitätsprinzip. Ann Phys. 1915;352:927–938. doi: 

10.1002/andp.19153521505
[3] Pauli W. Theory of relativity. London: Pergamon; 1958.
[4] Landau LD, Lifshitz EM, Pitaevskii LP. Electrodynamics of continuous media. (NY): 

Pergamon Press; 1984.
[5] Wang ZL, Shao J. Recent progress on the Maxwell’s equations for describing a 

mechano-driven medium system with multiple moving objects/media. Electromag Sci. 
2023;1:1–16. arXiv preprint arXiv:2306.02535. doi: 10.23919/emsci.2023.0017

[6] Born M. Einstein’s theory of relativity. (NY): Dover Publications; 1962.
[7] Le Bellac M, Lévy-Leblond JM. Γaлилeeвcкий элeктp oмaгнeтизм. Nuovo Cim 

B. 1973;14:217–234. doi: 10.1007/BF02895715
[8] Rousseaux G. Forty years of galilean electromagnetism (1973–2013). Eur Phys J Plus. 

2013;128:1–14. doi: 10.1140/epjp/i2013-13081-5
[9] Zangwill A. Modern electrodynamics. UK: Cambridge University Press. Section 22.6.3. 

2012.
[10] Levy-Leblond JM. Une nouvelle limite non-relativiste du groupe de Poincare. Ann Inst 

Henri Poncare, Section A Physique Theorique III. 1965;3:1–12. http://www.numdam.
org/item/AIHPA_1965__3_1_1_0/

[11] Feynman RP. The Feynman lectures on physics, vol. II: mainly electromagnetism and 
matter. New Millennium Ed. New York: Basic Books; 2011.

[12] Crooks MJ, Litvin DB, Matthews PW, et al. One-piece Faraday generator: a paradoxical 
experiment from 1851. Am J Phys. 1978;46:729–731. doi: 10.1119/1.11109

[13] Guala-Valverde J, Mazzoni P, Achilles R. The homopolar motor: a true relativistic engine. 
Am J Phys. 2002;70:1052–1055. doi: 10.1119/1.1498857

http://orcid.org/0000-0002-5530-0380
https://doi.org/10.1002/andp.19153521505
https://doi.org/10.23919/emsci.2023.0017
https://doi.org/10.1007/BF02895715
https://doi.org/10.1140/epjp/i2013-13081-5
http://www.numdam.org/item/AIHPA_1965__3_1_1_0/
http://www.numdam.org/item/AIHPA_1965__3_1_1_0/
https://doi.org/10.1119/1.11109
https://doi.org/10.1119/1.1498857


ADVANCES IN PHYSICS: X  55

[14] Wang ZL. The expanded Maxwell’s equations for a mechano-driven media sys-
tem that moves with acceleration. Int J Mod Phys B. 2022;37:2350159. doi: 
10.1142/S021797922350159X

[15] Wang ZL. On the expanded Maxwell’s equations for moving charged media system-
general theory, mathematical solutions and applications in TENG. Mater Today. 
2022;52:348–363. doi: 10.1016/j.mattod.2021.10.027

[16] Wang ZL. Maxwell’s equations for a mechano-driven, shape-deformable, charged-
media system, slowly moving at an arbitrary velocity field v(r,t). J Phys Commun. 
2022;6:085013. doi: 10.1088/2399-6528/ac871e

[17] Rozov A. Maxwell equations for slow-moving media. Z Naturforsch. 
2015;70:1019–1024. doi: 10.1515/zna-2015-0142

[18] Scanlon PJ, Henriksen RN, Allen JR. Approaches to electromagnetic induction. Am J 
Phys. 1969;37:698–708. doi: 10.1119/1.1975777

[19] Zhao K. Examples for disapprove flux rule. University Physics. Beijing: High Education 
Press; 1985. p. 10–13.

[20] Zangwill A. Modern electrodynamics. UK: Cambridge Press. Section 14.4.1. 2012.
[21] Jackson JD. Classical electrodynamics. 3rd ed. New York: John Wiley & Sons; 1999.
[22] Thakkar V, Niser IM, Mohapatra A. Faraday’s law in moving media; 2015. Available 

from: https://www.researchgate.net/publication/29946116
[23] Becker R. Electromagnetic fields and interactions. New York: Dover Publications; 1964.
[24] Wang ZL. On the first principle theory of nanogenerators from Maxwell’s equations. 

Nano Energy. 2020;68:104272. doi: 10.1016/j.nanoen.2019.104272
[25] Wang ZL. From contact electrification to triboelectric nanogenerators. Rep Prog Phys. 

2021;84:096502. doi: 10.1088/1361-6633/ac0a50
[26] Lax M, Nelson DF. Maxwell equations in material form. Phys Rev B. 1976;13:1777–1784. 

doi: 10.1103/PhysRevB.13.1777
[27] Crater HW. General covariance, Lorentz covariance, the Lorentz force, and the Maxwell 

equations. Am J Phys. 1994;62:923–931. doi: 10.1119/1.17682
[28] Available from: https://en.wikipedia.org/wiki/Covariant_formulation_of_classical_

electromagnetism
[29] Penfield P, Hermann AH. Electrodynamics of moving media. Cambridge (MA): The 

MIT Press; 1967.
[30] Fano RM, Chu LC, Adler RB. Electromagnetic fields, energy and forces. New Yo(NY): 

John Wiley & Sons, Inc; 1960.

https://doi.org/10.1142/S021797922350159X
https://doi.org/10.1016/j.mattod.2021.10.027
https://doi.org/10.1088/2399-6528/ac871e
https://doi.org/10.1515/zna-2015-0142
https://doi.org/10.1119/1.1975777
https://www.researchgate.net/publication/29946116
https://doi.org/10.1016/j.nanoen.2019.104272
https://doi.org/10.1088/1361-6633/ac0a50
https://doi.org/10.1103/PhysRevB.13.1777
https://doi.org/10.1119/1.17682
https://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism
https://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism

	ABSTRACT
	1. Introduction
	2. Galilean space and time
	3. Galilean electromagnetism
	3.2.1. Electric limit
	3.2.2. Magnetic limit

	4. Faraday's law for a moving object
	5. Ampere–Maxwell's law for a moving object
	5.2.1. Mathematical derivation
	5.2.2. Explanations of the Röntgen and Eichenwald experiments

	6. The Maxwell's equations for a mechano-driven system
	7. Displacement vector for multiple moving objects
	7.1. Mechano-driven polarization
	7.2. Calculation of Ps
	7.3. Maxwell's equations for a mechano-driven multi-object system

	8. Boundary conditions
	9. Conservation of energy
	10. Mathematical solutions of the MEs-f-MDMS
	10.1. Perturbation theory in time space
	10.2. Perturbation theory in frequency space
	10.3. Vector potential method
	10.3.1. Assumptions
	10.3.2. Vector potential solutions
	10.3.3. Expanded 4-D space
	10.3.4. The Lagrangian function
	10.3.5. An approximated approach


	11. Relationship with special relativity
	11.1. For motion in free soace and for moving objects
	11.2. Are Maxwell's equations covariance in moving medium?
	11.3. About Lorentz transformation

	12. Comparison with existing theories
	12.1. Minkowski formulation
	12.2. Chu formulation
	12.3. Wang formulation

	13. Contributions made by the MEs-f-MDMS
	14. Potential applications
	Acknowledgments
	Disclosure statement
	ORCID
	References

